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ABSTRACT

Live cell imaging often requires single particle tracking to 
capture the spatio-temporal details of molecular dynamics in 
situ. Here we present a single-particle tracking algorithm 
that constructs complete and unbiased trajectories from 
time-lapse sequences: It first links detected particles frame-
by-frame, then closes gaps between initial tracks, 
accounting for particle appearance, disappearance, merging 
and splitting. Both steps are compactly formulated as a 
linear assignment problem, leading to a globally optimal 
solution. Tracking is supported by on-the-fly classification 
of particle motion. The tracking algorithm is flexible and 
versatile. We have applied it to study trans-membrane 
protein interactions, endocytic pit lifetime distributions and 
sister kinetochore motion and coupling. 

Index Terms— single particle tracking, single molecule 
imaging, gap closing, occlusion

1. INTRODUCTION 

With the rapid development of bright fluorescent probes and 
sensitive cameras, live cell imaging has become a standard 
technique to study the dynamics of sub-cellular objects in 
situ. The resulting images often consist of punctate objects, 
for example when imaging sub-resolution macromolecular 
structures or – in the extreme case – single molecules [1]. In 
this case, live cell imaging is typically combined with single 
particle tracking in order to capture the spatio-temporal 
details of the process of interest [2]. 

Innumerable commercial and academic solutions to 
single particle tracking have been proposed [3-6]. Although 
it is superficially assumed that particle tracking is a solved 
problem, in reality existing particle tracking algorithms have 
very limited capability to extract accurate and complete 
molecular trajectories from image sequences. These 
algorithms can fail due to several challenges, most notably 
high particle density, significant heterogeneity in particle 
motion types, the merging and splitting of particles, and the 
temporary or permanent appearance and disappearance of 
particles. These limitations in tracking not only lead to data 
loss, preventing the optimal use of the great developments 
in fluorescence microscopy, but also to systematic errors 
that can result in biased and misleading conclusions 
regarding the molecular process analyzed. 

2. METHODS 

Here we present a tracking algorithm that addresses all of 
these issues, providing an accurate solution to the single 
particle tracking problem [7]. To construct complete and 
unbiased trajectories, our algorithm first links detected 
particles frame-by-frame and then closes gaps between 
initial tracks, accounting for particle appearance, 
disappearance, merging and splitting. Both steps are 
formulated as linear assignment problems in a bipartite 
graph [8], leading to a globally optimal solution to both 
particle assignment in the first step and track assignment in 
the second step. This general framework is independent of 
the cost matrix used for assignment; consequently, the cost 
matrix is flexible and can be tailored to the problem of 
interest. Furthermore, the algorithm can be applied to 
problems of various dimensions. 

For our applications, the cost for a link between two 
particles is taken to be proportional to the distance between 
them, potentially after explicit propagation of a particle’s 
position given the non-Brownian aspect of its motion (e.g. 
preferential motion along a certain direction). The motion 
modeling is very flexible: Particles can obey different 
motion types and can switch between them over the course 
of a trajectory. The cost for closing a gap, i.e. linking one 
track’s end to another track’s start, is also based on distance, 
taking into account the non-Brownian aspects of the tracks. 
The cost for merging and splitting events depends not only 
on distance but also on particle intensities. This ensures that 
merging and splitting events are not picked up only due to 
the proximity of particles but that the associated intensity 
changes are consistent with the image superposition of 
merging or splitting particles. 

3. RESULTS AND DISCUSSION 

3.1. Endocytic pit lifetime and functionality 

The goal of this study was to measure the lifetimes of 
endocytic clathrin-coated pits (CCPs) in the membrane and 
to correlate their lifetimes with their functionality. We used 
TIRF microscopy to image EGFP-labeled CCPs in BSC1 
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Figure 1. Endocytic CCPs. (A) A sample image of EGFP-tagged 
CCPs taken via TIRF microscopy. (B) CCP tracks of the movie 
shown in (A). 

cells (Fig. 1A) that were then detected using the a-troux 
algorithm [9] and tracked with the appropriate time window 
to close gaps (Fig. 1B). Accurate tracking that delivered 
complete tracks with properly closed gaps was critical to 
this study, since failure to close gaps would chop tracks into 
shorter segments and systematically bias the lifetime 
distribution toward smaller values. Detailed analysis of the 
obtained lifetime distribution revealed that there were three 
populations of CCPs with different endocytic productivity 
and characteristic lifetime in the membrane. These data led  

Figure 2. The macrophage trans-membrane protein CD36. (A) A 
sample image of Cy3-labeled CD36 molecules taken via epi-
fluorescence microscopy. (B) CD36 tracks of the movie shown in 
(A).

to the discovery of an endocytic checkpoint that monitors 
the readiness of a CCP for internalization. 

3.2. Trans-membrane protein interactions 

The goal of this study was to characterize the kinematics of 
and interactions between the macrophage trans-membrane 
receptor CD36, the clustering of which is thought to be 
important for its signaling function. Here it was not only  
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Figure 3. Time-averaging enhanced detection efficiency. Features 
placed on a regular grid against backgrounds of increasing noise 
were detected and the detection results were compared to the 
ground truth. Detection with time averaging means that the search 
for local maxima was done on time-averaged images using a 
sliding window of a certain value. A window of 1 implies that 
there was no time averaging. Signal-to-noise ratio was defined as 
the ratio of signal above background to the standard deviation of 
background intensity. 

critical to get complete tracks, but to also capture merge and 
split events that indicated interactions between individual 
CD36 molecules. We obtained single molecule images of 
Cy3-labeled CD36 in primary macrophages using epi-
fluorescence microscopy (Fig. 2A), and then estimated their 
positions by fitting Gaussian kernels in areas around local 
maxima [10]. To enhance detection efficiency under the low 
signal-to-noise ratio conditions of single molecule movies, 
the search for local maxima prior to Gaussian fitting in 
individual frames was performed in time-averaged images 
using a sliding window of 3 (Fig. 3). Since CD36 molecules 
seemed to move along linear tracks, we tracked them by 
explicitly including in the cost function information on 
speed and directionality (Fig. 2B). Interestingly, we found 
that the CD36 molecules that moved along linear tracks had 
twice the probability of merging and splitting, i.e. 
interacting, than the molecules that did not move on linear 
tracks. These observations define a novel function of 
cytoskeleton structures in organizing receptor trafficking to 
enhance the chance for accumulation of signaling-
competent clusters. 

3.3. Sister kinetochore motion and coupling 

The goal of this study was to characterize the motion of and 
coupling between sister-kinetochores during cell division 
and to elucidate the roles of various kinetochore proteins in 
their regulation. While imaging in the previous two 
applications was limited to 2D, in this study it was 

necessary to image and track in 3D. We followed 
kinetochore motion  

Figure 4. HeLa kinetochores. (A) A sample image of EGFP-
labeled kinetochores taken via epi-fluorescence microscopy. (B) 
Kinetochore tracks of the movie shown in (A).

in HeLa cells by labeling a kinetochore protein with EGFP 
and imaging via epi-fluorescence microscopy (Fig. 4A). We 
estimated the 3D kinetochore positions by simple local 
maxima detection and centroid calculation. Then we tracked 
kinetochore positions over time using an appropriate time 
window that resulted in complete kinetochore trajectories 
(Fig. 4B). These trajectories were used to identify pairs of 
sister kinetochores and to analyze properties of force 
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transmission between kinetochore pairs. This study revealed 
that sister kinetochore breathing and the oscillation of 
kinetochores about the metaphase plate is regulated by 
many kinetochore proteins. 
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